
Tracealyzer for Linux
Overview and Getting started

?

Software behavior depends on timing
Source code alone does not show the full picture…

Multi-threaded systems have context-switches, i.e., control-flow not visible in source code.
Impacts system performance and dangerous sporadic errors like timeouts or deadlocks.
Depends on code execution times and timing of inputs.

Tracealyzer shows what’s going on!

Software-Defined Tracing
+ Easy to use
+ Flexible/configurable
+ Always applicable

Tracealyzer is about Visualization

Cleverly Interconnected

Increasing Development Efficiency
and Software Performance

Validation
Code running as intended?

Debugging
Detailed real-time behavior

Profiling
RAM and CPU usage?

Documentation
Visualize designs or issues

Training
Learn the software platform

“Tracealyzer has doubled our development speed.
Problems that otherwise would take days to solve are
obvious with this tool and just a quick fix. We use it all
the time.”
Alex Pabouctisids, Lead Firmware Engineer, Flyability.

“In less than 5 days from running the
tool, we improved the performance of
our graphic rendering engine by 3x!”
Terry West, CEO, Serious Integrated Inc.

”In today’s tough competition with time-to-market pressure
constantly increasing, visualization support is natural for
software developers in order to produce software of higher
quality, in shorter time and at a lower cost. We choose
Tracealyzer from Percepio.”
Jörgen Appelgren, R&D Manager, Atlas Copco Rock Drills

Percepio’s tracing tool allowed me to quickly understand and
solve serious multi-threading issues, that otherwise would
have taken least two weeks to analyze. I got started and solved
the first issue in a single day. I strongly recommend Percepio’s
tracing tools.”
Chaabane Malki, Embedded Systems Engineer, CGX Aero

ABB Robotics is using the first generation Tracealyzer in all of
the IRC5 robot controllers shipped since 2005. The tool has
proven its value many times in all corners of the world.”
Roger Kulläng, Global System Architect, ABB Robotics.

“The many system views of the Tracealyzer from Percepio
makes it easy to quickly find solutions that we have not
seen using (Wind River) System Viewer. The visualization has
several advantages over the system viewer and makes it
easier to understand system behavior. This tool would be of
great use for us.”
Johan Fredriksson, Software Architect, SAAB AB.

For Leading Companies

For Leading Software Platforms

Tracealyzer for Linux

FreeRTOS+Trace

SafeRTOS+Trace embOS-Trace

µC/Trace

Tracealyzer for VxWorks

Main Trace View: Vertical time-line showing task scheduling, interrupts, kernel service calls
and custom ”User Events”. Filter the display using the ”View Filter” in the bottom right.

Kernel Object History: Double-clicking on a kernel call in the main trace view opens this view,
showing the list of events for the same kernel object (e.g., File Descriptor or Semaphore).

Communication Flow: Auto-generated summary of dependencies between threads and
kernel objects. Can be generated for a selected interval, or for the whole trace.

CPU Load Graph: Displays the relative usage of CPU time, per thread and time interval on
each processor core. Double-click on intervals to see the details in the main trace view.
The interval displayed in the main trace view is indicated using a grey outlined rectangle.

User Event Signal Plot: Displays a plot of data arguments in ”User Events”, can be used for
continuous input signals, state variables, or any data of interest.

Event Log: Displays a textual list of the event timeline of the main trace view, with filtering
and color coding. Exports traces in text format for comparisons and custom analyses.

Raw Trace View

Displays all LTTng events unfiltered, with (almost) no analysis. Works directly from disk to allow for
viewing very large traces. You may select and open an interval in the other Tracealyzer views.

Other Views Provided

• Kernel Object Utilization
– Watch queue sizes over time

• Kernel Call Intensity
– Check the rate of kernel calls

• Kernel Blocking Times
– See blocking on kernel calls

• Scheduling Intensity
– The rate of context-switches

• Statistics Report
– Timing and CPU usage

– Descriptive statistics

– Timing distributions per job

• Heap Memory Allocation
– Malloc/free over time

• Actor Instance Graphs
– Plot the timing of each job

Tracealyzer for Linux relies on LTTng

LTTng v2.x is the defacto standard for Linux tracing and
is included in most distributions. Since kernel v.2.6.38
LTTng does not require any kernel patching. But it
works also on older kernels from v2.6.32.

Tracing with LTTng

• Install LTTng
– See https://lttng.org/docs/#doc-installing-lttng

• Create a trace session
– lttng create my-session

• Select what kernel events to enable
– lttng list --kernel // shown the available kernel events
– lttng enable-event --kernel sched_switch[, ...] [--all]
– “sched_switch” should always be included

• Select any userspace events to enable
– lttng list --userspace // shown the available userspace events
– lttng enable-event --userspace [process:tracepoint] [--all]

• Start tracing
– sudo lttng start // default output is ~/lttng-traces

• Stop tracing
– sudo lttng stop
– sudo lttng destroy // closes the trace session

• Learn more about LTTng at https://lttng.org/

https://lttng.org/docs/#doc-installing-lttng
https://lttng.org/docs/#doc-installing-lttng
https://lttng.org/docs/#doc-installing-lttng
https://lttng.org/docs/#doc-installing-lttng
https://lttng.org/docs/#doc-installing-lttng
https://lttng.org/docs/#doc-installing-lttng
https://lttng.org/docs/#doc-installing-lttng
https://lttng.org/
https://lttng.org/

Running on Linux

• Running Tracealyzer on Linux requires Mono, the
Open Source .NET environment.
– Check if already installed (mono --version)

– Otherwise get it from http://www.mono-project.com/

• Download TracealyzerForLinux-2.7.5.tgz or later
– From http://percepio.com/tz/downloads/

• Extract the .tgz archive to any suitable location

• Open a console and run mono TzForLinux.exe
– You get 30 days free evaluation on registration

• To open an LTTng trace (a directory of files), select File ->
Open and then locate the ”metadata” file.

http://www.mono-project.com/
http://www.mono-project.com/
http://www.mono-project.com/
http://percepio.com/tz/downloads/
http://percepio.com/tz/downloads/

Creating ”User Events” from your code

Old detailed method: LTTng tracepoint

#include <lttng/tracepoint.h>

TRACEPOINT_EVENT(percepiodemo, simpleuserevent,
 TP_ARGS(char*, channel, float, val),
 TP_FIELDS(ctf_string(channel, channel) ctf_float(float, val, val)))
...
char* channel = "SimpleUserEvent";
tracepoint(percepiodemo, simpleuserevent, channel, val);

New easy method: tracef, a printf-style interface for LTTng tracepoint

#include <lttng/tracef.h>
...
tracef(“Hello world: %d", myValue);

New even easier method: Just write to ”/proc/lttng-logger”

echo -n ‘Hello world!' > /proc/lttng-logger

Configuring ”User Events” in Tracealyzer

Tracealyzer only displays recognized LTTng events. The “User Events” must therefore be specified in a
”Platform Extension” file, added in File -> Settings. To see ALL LTTng events, use the “Raw Trace View”.

Example: PercepioDemo.xml
<?xml version="1.0" encoding="utf-8"?>
<PlatformExtension>
 <EventMap>
 <Event name="percepiodemo:simpleuserevent" type="UserEvent">
 <Parameter name="channel" var="channel"/>
 <Parameter name="val" var="val"/>
 </Event>
 </EventMap>
</PlatformExtension>

name: the Tracealyzer name for this parameter
var: the name of the LTTng tracepoint

Parameter name ”channel” has special meaning, specifies
the User Event Channel name.

This example is available in Help menu -> ”LTTng UST Example”

Advanced: Tracing your own ”Kernel Services”

Tracealyzer can be configured to display LTTng events from any function call as ”Kernel
Services” which enables many functions like Kernel Object History and matching of related
events. This requires three steps…

Step 1. Record the function calls with LTTng

prog.c

ptr = malloc(64);

void* malloc(size_t size) // wrapper for malloc

{

 void* ret;

 static void* (*realmalloc)(size_t size) = NULL;

 if (realmalloc == NULL)

 realmalloc=dlsym(RTLD_NEXT, "malloc");

 ret = realmalloc(size);

 tracepoint(percepio, malloc, size, ret);

 return ret;

}

wrapper.so

malloc

LTTng

Library

malloc

$ LD_PRELOAD=./wrapper.so ./prog

With tracepoints in wrapper functions and using LD_PRELOAD, the code don’t
need to be changed or even recompiled. The dynamic linking will route the calls
to the new wrapper function, which calls LTTng plus the original function.

Step 2. Create a Platform Extension XML file for the
new LTTng events

<PlatformExtension>
 <TargetPlatform>
 <KernelServiceGroups>
 <KernelServiceGroup name="UST"> - the group name showed in the View Filter

 <KernelService name="sem_wait" operation="IncreaseSemaphore"> - The name and meaning of event
 <Parameter name="sem"/>
 </KernelService>
 ...
 </KernelServiceGroup>
 </KernelServiceGroups>
 <ObjectClasses>

 <ObjectClass name="PthreadSemaphore" type="Semaphore"/> - Type and display name of object class
 </ObjectClasses>
 </TargetPlatform>
 <ObjectMap>

 <Object class="PthreadSemaphore" format="0x{0:X8}"/> - How to format identifiers for such objects
 </ObjectMap>
 <EventMap> - Mapping between LTTng events and kernel services calls

 <Event name="percepio:sem_wait_entry" service="UST/sem_wait" type="Entry" status="Detect">
 <Parameter name="sem" var="sem" class="PthreadSemaphore"/>
 </Event>

 <Event name="percepio:sem_wait_exit" service="UST/sem_wait" type="Exit" status="Success">
 <Condition cvar="ret" cval="0" cop="<" target="status" value="Timeout"/> - if (ret < 0) status = “Timeout”;
 </Event>
 ...
 </EventMap>
</PlatformExtension>

This example is available in Help menu -> ”LTTng UST Example”

Step 3. Import the Platform Extension

Questions?

support@percepio.com

mailto:support@percepio.com

